本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到        更高版本!以获得更好的观看效果。关闭

师资队伍

首页 > 师资队伍 > 教师 > 给水排水教研所 > 正文

给水排水教研所

吴以朋

邮箱:wu_yp2021@mail.tsinghua.edu.cn

电话:

地点:清华大学环境学院

教育背景

2010.09 - 2014.06 本科 学士学位 山东大学 环境工程专业

2014.09 - 2020.01 研究生 博士学位 清华大学 环境科学与工程专业


工作履历

2020.04 - 2021.07 天津市政工程设计研究总院有限公司 工程师

2021.09 - 2021.11 清华大学环境学院 科研助理

2024.04 - 2025.03 荷兰代尔夫特理工大学 访问学者

2021.12 - 2025.08 清华大学环境学院 博士后

2025.08 - 至今 清华大学环境学院 副研究员


学术兼职

AQUA - Water Infrastructure, Ecosystems and Society, Associate Editor, 2024-2027


研究领域

水务基础设施的韧性评估、状态智能诊断以及绿色运行技术


研究概况(主要承担项目)

  1. 国家自然科学基金青年科学基金项目(C类):基于串联腔体共振的供水管道泄漏声波产生机理与识别方法研究,2024-2025,主持

  2. 国家重点研发计划:高龄服役管线输配安全劣化机制及系统调控技术与装备,2023-2027,参与

  3. 国家自然科学基金面上项目:基于多源数据融合的供水DMA泄漏诊断机理与方法研究,2019-2022,参与

  4. 国家科技重大专项:常州市供水管网水质安全保障与突发污染应急技术研究,2017-2021,参与

  5. 国家重点研发计划政府间合作重点专项:再生水安全供水系统与关键技术,2016-2021,参与

  6. 国家科技重大专项:城市供水管网智能管理系统关键技术研究与示范, 2014-2018,参与


奖励与荣誉

  1. 中国城镇供水排水协会科学技术奖一等奖“基于余氯调控的龙头水质保障技术与应用”(2023)

  2. 华夏建设科学技术奖一等奖“供水管网漏损系统性管控技术与装备”(2021)

  3. 清华大学“水木学者”人才支持计划(2021)


学术成果

(一)期刊文章

  1. Xie, Y., Wu, Y. *, Huang, Y., Jin, Y., Li, Y., Li, L., He, C., Zhao, B., Li, X., Liu, S. *, 2025. Optimal scheduling method integrating priori expert knowledge for water distribution systems based on historical operational information tensor: A new perspective. Resources, Conservation and Recycling 219, 108321.

  2. Ma, X., Wu, Y. *, Guo, G., Liu, S.*, Xu, Y., Fan, J., Wang, H., Xu, L., 2025. Leak detection in water supply networks using two-stage temporal segmentation and incremental learning for non-stationary acoustic signals. Water Research X 29, 100333.

  3. Wu, Y., Liu, S., Kapelan Z., 2024. Addressing data limitations in leakage detection of water distribution systems: Data creation, data requirement reduction, and knowledge transfer. Water Research 267, 122471.

  4. Wu, Y., Xu M., Liu, S., 2024. Generative artificial intelligence: A new engine for advancing environmental science and engineering. Environmental Science & Technology 58(40), 17524-17528.

  5. Wu, Y., Ma, X., Guo, G., Jia, T., Huang, Y., Liu, S., Fan, J., Wu, X., 2024. Advancing deep learning-based acoustic leak detection methods towards application for water distribution systems from a data-centric perspective. Water Research 261, 121999.

  6. Yu, X., Wu, Y.*, Meng, F., Zhou, X., Liu, S.*, Huang, Y., Wu, X., 2024. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects. Water Research 253, 121238.

  7. Wu, Y., Wang, X., Liu, S., Yu, X., Wu, X., 2023. A weighting strategy to improve water demand forecasting performance based on spatial correlation between multiple sensors. Sustainable Cities and Society 93, 104545.

  8. Yu, X., Wu, Y.*, Zhou, X., Liu, S.*, 2023. Resilience evaluation for water distribution system based on partial nodes’ hydraulic information. Water Research 241, 120148.

  9. Wu, Y., Ma, X., Guo, G., Huang, Y., Liu, M., Liu, S., Zhang, J., Fan, J., 2023. Hybrid method for enhancing acoustic leak detection in water distribution systems: Integration of handcrafted features and deep learning approaches. Process Safety and Environmental Protection 177, 1366-1376.

  10. Wu, Y., Liu, S., 2020. Burst detection by analyzing shape similarity of time series subsequences in district metering areas. Journal of Water Resources Planning and Management 146(1), 4019068.

  11. Wu, Y., Liu, S., Wang, X., 2018. Distance-based burst detection using multiple pressure sensors in district metering areas. Journal of Water Resources Planning and Management 144(11), 6018009.

  12. Wu, Y., Liu, S., Smith, K., Wang, X., 2018. Using correlation between data from multiple monitoring sensors to detect bursts in water distribution systems. Journal of Water Resources Planning and Management 144(2), 4017084.

  13. Wu, Y., Liu, S., 2017. A review of data-driven approaches for burst detection in water distribution systems. Urban Water Journal 14(9), 972-983.

  14. Wu, Y., Liu, S., Wu, X., Liu, Y., Guan, Y., 2016. Burst detection in district metering areas using a data driven clustering algorithm. Water Research 100, 28-37.

  15. Jia, T., Yu, J., Sun, A., Wu, Y., Zhang, S., Peng, Z., 2025. Semi-supervised learning-based identification of the attachment between sludge and microparticles in wastewater treatment. Journal of Environmental Management 375, 124268.

  16. He, C., Wu, Y., Zhou, X., Huang, Y., Shui, A., Liu, S., 2024. The heterogeneous impact of population mobility on the influent characteristics of wastewater treatment facilities. Journal of Environmental Management 366, 121672.

  17. Xie, Y., Wu, Y., Jin, Y., Li, Y., Zhao, B., Li, X., Ba, Z., Liu, S., 2024. Energy-efficient and reliable coordinated scheduling for water distribution systems: enhancing hydraulic conditions and water quality. AQUA - Water Infrastructure, Ecosystems and Society 73 (11), 2229-2241.

  18. Huang, Y., Xie, Y., Wu, Y., Meng, F., He, C., Zou, H., Wang, X., Shui, A., Liu, S., 2023. Modeling indirect greenhouse gas emissions sources from urban wastewater treatment plants: Integrating machine learning models to compensate for sparse parameters with abundant observations. Environmental Science & Technology 57(48), 19860-19870.

  19. Liu, M., Lang, X., Li, S., Deng, L., Peng, B., Wu, Y., Zhou, X., 2023. Improved machine learning leak fault recognition for low-pressure natural gas valve. Process Safety and Environmental Protection 178, 947-958.

  20. Zhou, X., Liu, S., Xu, W., Xin, K., Wu, Y., Meng, F., 2022. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures. Water Research 217, 118416.

  21. Guo, G., Yu, X., Liu, S., Ma, Z., Wu, Y., Xu, X., Wang, X., Smith, K., Wu, X., 2021. Leakage detection in water distribution systems based on time–frequency convolutional neural network. Journal of Water Resources Planning and Management 147(2), 4020101.

  22. Wang, X., Guo, G., Liu, S., Wu, Y., Xu, X., Smith, K., 2020. Burst detection in district metering areas using deep learning method. Journal of Water Resources Planning and Management 146(6), 4020031.

  23. Guo, G., Liu, S., Wu, Y., Li, J., Zhou, R., Zhu, X., 2018. Short-term water demand forecast based on deep learning method. Journal of Water Resources Planning and Management 144(12), 4018076.

  24. Yuan, Q., McIntyre, N., Wu, Y., Liu, Y., Liu, Y., 2017. Towards greater socio-economic equality in allocation of wastewater discharge permits in China based on the weighted Gini coefficient. Resources Conservation and Recycling 127, 196-205.

  25. Smith, K., Liu, S., Liu, Y., Liu, Y., Wu, Y., 2017. Reducing energy use for water supply to China's high-rises. Energy and Buildings 135, 119-127.

(二)中文期刊

  1. 王晓婷, 吴以朋, 刘书明, 吴雪, 2023. 基于FFB-LSTM的供水计量区超短时水量预测方法研究. 给水排水,59(03), 133-139.

  2. 刘书明, 徐强, 信昆仑, 郭军, 郭冠呈, 沈建鑫, 吴雪, 李强祖, 王晓婷, 赵晔, 周啸, 吴以朋, 强志民, 2022. 供水管网漏损系统性管控技术与装备. 建设科技(07), 115-117.

  3. 吴以朋, 刘书明, 赵乐军. 供水管网计量区水量数据的特征分析. 给水排水, 2021, 05: 116-121+127.

  4. 刘书明, 吴以朋, 王晓婷, 刘友飞, 李佳杰. 应用聚类算法识别供水管网爆管事故.清华大学学报(自然科学版), 2017, 57(10): 1096-1101.

  5. 刘书明, 吴以朋, 车晗. 利用自识别的供水管网监测数据质量控制. 清华大学学报(自然科学版), 2017, 57(09): 999-1003.

  6. 刘书明, 吴以朋, 车晗.基于交互识别的供水管网数据异常值检测. 给水排水, 2015, 41(11): 150-154.

(三)会议论文

  1. Wu, Y., Liu, S., 2017. Clustering-based burst detection using multiple pressure sensors in district metering areas. International Computing & Control for the Water Industry Conference. Sheffield, UK.

(四)专利

  1. 刘书明, 吴以朋, 吴雪. 监测数据在线清洗的方法和设备. 中国, ZL 201811593041.0. (发明专利)

  2. 刘书明, 吴以朋, 吴雪. 基于时间序列形状分析的供水管网泄漏事件诊断方法. 中国, ZL 201811040169.4. (发明专利)

  3. 刘书明, 吴以朋, 吴雪. 一种基于时序向量相似度分析的爆管识别与定位方法. 中国, ZL 201711328711.1. (发明专利)

  4. 刘书明, 吴以朋, 吴雪. 一种基于计量分区流量监测数据的爆管预警方法. 中国, ZL 201610245327.4. (发明专利)

  5. 张鸿斌, 赵乐军, 冷晓东, 吴以朋, 李鹏, 杨丽丽, 胡作鹏, 荣梅, 杨海涛, 葛小利, 张云飞. 一种适用于河道循环、补水和排涝的地下泵站系统. 中国, 2020213580896. (实用新型专利)

(五)软件著作权

  1. 刘书明, 吴以朋, 吴雪, 赵云峰. 供水管网管线健康状态评估与风险识别系统V1.0. 2025SR0300507.

  2. 刘书明, 吴以朋, 吴雪. 供水系统漏损甄别与预警系统V1.0. 2020SR0224590.

  3. 刘书明, 吴以朋, 吴雪. 输配管网末端流量压力监控系统V1.0. 2020SR0270071