本站不再支持您的浏览器,360、sogou等浏览器请切换到极速模式,或升级您的浏览器到        更高版本!以获得更好的观看效果。关闭

师资队伍

首页 > 师资队伍 > 教师 > 大气污染与控制教研所 > 正文

大气污染与控制教研所

蒋靖坤

邮箱:jiangjk@tsinghua.edu.cn

电话:010-62781512

地点:清华大学中意清华环境节能楼

教育背景

2004 – 2008  圣路易斯华盛顿大学能源环境与化学工程系,博士

2002 – 2004  清华大学环境科学与工程系,硕士

1998 – 2002  清华大学环境科学与工程系,学士


工作履历

2019-2023    清华大学环境学院 副院长

2017-至今    清华大学环境学院  长聘教授

2010-2016    清华大学环境学院 副研究员、准聘副教授、长聘副教授

2008 -2010   明尼苏达大学机械工程系,博士后

教学

2021-至今   理论与实践:空气(本科生)

2011-至今   气溶胶力学(研究生)

2013-2020   空气质量管理(本科生)

2020      新生导引课(本科生)

2010      纳米技术与工程,客座教师

2008      表面和胶体科学,助教

2005      传递现象,助教


学术兼职

2021 – 至今  Editorial Board, Results in Engineering
2020 – 至今  Editorial Board, Environmental Science & Technology Letters
2019 – 至今  Editorial Board, Environmental Research
2016 – 至今  Editor, Aerosol Science and Technology
2016 – 至今  环境模拟与污染控制国家重点联合实验室清华分室主任
2017 – 2018  Technical Program Committee, 2018 International Aerosol Conference
2017 – 2020  Guest editor, Atmospheric Chemistry & Physics
2016 – 2019  Editorial Board, Journal of Aerosol Science


奖励与荣誉

2020,ES&T Letters Excellence in Review Award
2020,教育部长江学者特聘教授
2019,中国化学会青年环境化学奖
2019,清华大学青年教师教学优秀奖
2019,清华大学先进工作者
2018,Smoluchowski Award
2017、2018、2019, 清华大学年度教学优秀奖
2016,教育部青年长江学者
2016,北京市科技进步一等奖
2016,国家环境保护专业技术青年拔尖人才
2016,清华大学2015届&2016届毕业生心目中的好教师
2015,Asian Young Aerosol Scientist Award
2015,国家科技进步二等奖
2014,“万人计划”青年拔尖人才
2014,教育部科技进步一等奖
2014,北京市科技新星
2012,清华大学第五届青年教师教学大赛二等奖(理工组)
2009,A&WMA Dissertation Award
2002,清华大学优良毕业生


研究领域

大气污染与气候变化、气溶胶科学与技术、环境监测


研究概况

  1. 大气多相全氧化态有机组分在线测量质谱仪研制,国家重大科研仪器研制项目,2024-2028

  2. 大气霾化学,基金委基础科学中心项目,2022-2026

  3. 固定源超低排放高精度监测与质控技术,国家重点研发计划,2022-2025

  4. 我国东部超大城市群大气复合污染成因外场综合协同观测研究,基金委重大研究计划集成项目,2021-2023

  5. 环境介质中的病毒识别与传播规律,基金委重大项目,2021-2025

  6. 新冠病毒传播与环境的关系及风险防控,国务院联防联控机制科技攻关专项,2020-2021

  7. New particle formation and growth mechanism in atmospheric environments with high aerosol loading, Samsung Global Research Program, 2019-2025

  8. 面向交通系统颗粒物排放监测的道路微站技术研究,政府间国际科技创新合作重点专项,2019-2022

  9. 改进冷凝生长技术以提高1-3纳米大气颗粒物检测效率,基金委面上项目, 2019-2022

  10. 多尺度高时空分辨率污染物排放及变化趋势,国家重点研发计划,2018-2021

  11. 大气中Criegee中间体实时在线检测方法研发,基金委重点项目,2018-2022

  12. 纳米颗粒物粒径分析技术,国家重点研发计划,2017-2020

  13. 大气细颗粒物暴露导致慢阻肺的暴露组学与系统生物学研究,基金委重大研究计划重点项目,2017-2020

  14. 大气颗粒有机物在线前处理及富集技术研发,国家重点研发计划,2016-2020

  15. 大气污染化学,基金委优秀青年基金项目,2015-2017

  16. 长三角区域大气重污染事件发生特征与形成途径研究,“十二五”科技支撑项目,2014-2017

  17. 北京市民用燃煤PM2.5排放特征研究,北京市科技新星项目,2014-2017

  18. 多介质复合污染与控制化学,基金委创新群体项目,2013-2018

  19. 二次细粒子粒径分布、化学组成和光学特性在线测量系统,基金委国家重大科研仪器设备研制专项,2013-2017

  20. 烟气系统中细颗粒物的转化机制与脱除增强的机理与方法,973项目,2013-2017

  21. 钢铁窑炉烟尘PM2.5控制技术与装备,863项目,2013-2015

  22. 大气二次颗粒物的化学组分特征及形成机制,基金委重大项目,2012-2016

  23. 大气新粒子的生长机制研究, 基金委青年基金项目,2012-2014

  24. 长江三角洲地区大气灰霾特征与控制途径研究, 环保公益性行业科研项目,2010-2013

  25. Clusters to Nanoparticles: Implications for Atmospheric Nucleation. U.S. National Science Foundation, 2005-2010

  26. Growth Rates of Freshly Nucleated Particles. U.S. Department of Energy, 2007-2010

  27. Relationship between Phsico-chemical Characteristics and Toxicological Properties of Nanomaterials. U.S. Air Force Office of Scientific Research, 2005-2009

  28. Full Development of Interactive Aerosol Program. U.S. National Science Foundation, 2005-2008

  29. Synthesis and Application of Magnetic Nanoparticles. U.S. National Science Foundation, 2003-2007

  30. 燃烧源可吸入颗粒物源的物理化学特征及其成因研究,973计划项目,2002-2007


部分学术成果

一、英文文章

(完整英文文章列表请点击链接查看。课题组招收本科生、研究生和博士后,欢迎联系jiangjk@tsinghua.edu.cn)

  1. Precursor apportionment of atmospheric oxygenated organic molecules using a machine learning method

    Qiao et al., Environmental Science: Atmospheres, 2023, 3 (1): 230-237

  2. Increasing contribution of nighttime nitrogen chemistry to wintertime haze formation in Beijing observed during COVID-19 lockdowns

    Yan et al., Nature Geoscience ,2023, 16 (11): 975-981

  3. Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles

    Wu et al., Nature Communications, 2023, 14(1): 6491

  4. Unified theoretical framework for black carbon mixing state allows greater accuracy of climate effect estimation

    Wang et al., Nature Communications, 2023, 14(1): 2703

  5. Online detection of airborne nanoparticle composition with mass spectrometry: Recent advances, challenges, and opportunities

    Li et al., TrAC Trends in Analytical Chemistry, 2023, 166: 117195

  6. Two pan-SARS-CoV-2 nanobodies and their multivalent derivatives effectively prevent Omicron infections in mice

    Liu et al., Cell Reports Medicine, 2023, 4 (2): 100918

  7. Single-atom catalysts: promotors of highly sensitive and selective sensors

    Li et al., Chemical Society Reviews, 2023, 52 (15): 5088-5134

  8. China’s public health initiatives for climate change adaptation

    Ji et al., The Lancet Regional Health - Western Pacific, 2023, 40: 100965

  9. Secondary organic aerosol formed by condensing anthropogenic vapours over China's megacities

    Nie et al., Nature Geoscience, 2022, 15: 255-261

  10. Toxic potency-adjusted control of air pollution for solid fuel combustion

    Wu et al., Nature Energy, 2022, 7: 194-202

  11. The missing base molecules in atmospheric acid–base nucleation

    Cai et al., National Science Review, 2022, 9 (10): nwac137

  12. Application of smog chambers in atmospheric process studies

    Chu et al., National Science Review, 2022, 9: nwab103

  13. Liquid-liquid phase separation reduces radiative absorption by aged black carbon aerosols

    Zhang et al., Communications Earth & Environment, 2022, 3 (1): 128

  14. Cr-Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity

    Zhang et al., Advanced Materials, 2022, 34(2): 2105276

  15. Observation and Source Apportionment of Atmospheric Alkaline Gases in Urban Beijing

    Zhu et al., Environmental Science & Technology, 2022, 56(24): 17545-17555

  16. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases

    Zhang et al., Engineering, 2022, 10: 155-166

  17. Measuring size distributions of atmospheric aerosols using natural air ions

    Li et al., Aerosol Science and Technology, 2022, 56: 655-664

  18. Emissions of Ammonia and Other Nitrogen-Containing Volatile Organic Compounds from Motor Vehicles under Low-Speed Driving Conditions

    Yang et al., Environ. Sci. & Technol., 2022, 56: 5440-5447

  19. Evaluation of a cost-effective roadside sensor platform for identifying high emitters

    Shen et al., Science of The Total Environment, 2022, 816: 151609

  20. Sulfuric acid-amine nucleation in urban Beijing

    Cai et al., Atmospheric Chemistry and Physics, 2021, 21(4): 2457-2468

  21. Acid–Base Clusters during Atmospheric New Particle Formation in Urban Beijing

    Yin et al., Environmental Science & Technology, 2021, 55: 10994-11005

  22. Contribution of Atmospheric Oxygenated Organic Compounds to Particle Growth in an Urban Environment

    Qiao et al., Environmental Science & Technology, 2021, 55: 13646-13656

  23. An indicator for sulfuric acid–amine nucleation in atmospheric environments

    Cai et al., Aerosol Science and Technology, 2021, 55: 1059-1069

  24. Composition of Ultrafine Particles in Urban Beijing: Measurement Using a Thermal Desorption Chemical Ionization Mass Spectrometer

    Li et al., Environmental science & technology, 2021, 55(5): 2859-2868

  25. Improving data reliability: A quality control practice for low-cost PM2.5 sensor network

    Qiao et al., Science of The Total Environment, 2021, 779: 146381

  26. Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

    Deng et al., Environmental Science & Technology, 2020, 54: 8547-8557

  27. Quantifying the Deposition of Airborne Particulate Matter Pollution on Skin Using Elemental Markers

    Morgan et al., Environmental Science & Technology, 2020, 54(24): 15958-15967

  28. Air pollutant emissions from coal-fired power plants in China over the past two decades

    Wang et al., Science of The Total Environment, 2020, 741: 140326

  29. Transmission via aerosols: Plausible differences among emerging coronaviruses

    Jiang et al., Aerosol Science and Technology, 2020, 54: 865-868

  30. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols

    An et al., Journal of Chromatography A, 2020, 1625: 461336

  31. Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China

    Wang et al., Environmental Science & Technology, 2020, 54: 1363-1371

  32. Significant ultrafine particle emissions from residential solid fuel combustion

    Wang et al., Science of The Total Environment, 2020, 715, 136992

  33. Models for estimating nanoparticle transmission efficiency through an adverse axial electric field

    Cai et al., Aerosol Science and Technology, 2020, 54: 332-341

  34. Transmission of charged nanoparticles through the DMA adverse axial electric field and its improvement

    Cai et al., Aerosol Science and Technology, 2020, 54: 21-32

  35. Cobalt Nanoparticles and Atomic Sites in Nitrogen-Doped Carbon Frameworks for Highly Sensitive Sensing of Hydrogen Peroxide

    Li et al., Small, 2020, 16: 1902860

  36. Theoretical and experimental analysis of the core sampling method: Reducing diffusional losses in aerosol sampling line

    Fu, et al., Aerosol Science and Technology, 2019, 53: 793-801

  37. A soft X-ray unipolar charger for ultrafine particles

    Chen et al., Journal of Aerosol Science, 2019, 133: 66-71

  38. Improving thermal desorption aerosol gas chromatography using a dual-trap design

    Ren et al., Journal of Chromatography A, 2019, 1599: 247-252

  39. Quartz filter-based thermal desorption gas chromatography mass spectrometry for in-situ molecular level measurement of ambient organic aerosols

    Ren et al., Journal of Chromatography A, 2019, 1589: 141-148

  40. Relative humidity effect on the formation of highly oxidized molecules and new particles during monoterpene oxidation

    Li, et al., Atmospheric Chemistry and Physics, 2019, 19: 1555-1570  

  41. Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China

    Wang et al., Science of the Total Environment, 2018, 639: 695-704

  42. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance of electrical mobility size spectrometers

    Chen et al., Aerosol Science and Technology, 2018, 52: 809-813

  43. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications

    Chen et al., Aerosol Science and Technology, 2018, 52: 1145-1155

  44. Data inversion methods to determine sub-3 nm aerosol size distributions using the particle size magnifier

    Cai et al., Atmospheric Measurement Techniques, 2018, 11: 4477-4491

  45. Nascent soot particle size distributions down to 1 nm from a laminar premixed burner-stabilized stagnation ethylene flame

    Tang et al., Proceedings of the Combustion Institute, 2017, 36: 993-1000

  46. Aerosol surface area concentration: a governing factor in new particle formation in Beijing

    Cai et al., Atmos. Chem. Phys., 2017, 17: 12327-12340

  47. A new balance formula to estimate new particle formation rate: reevaluating the effect of coagulation scavenging

    Cai et al., Atmos. Chem. Phys., 2017, 17: 12659-12675

  48. A miniature cylindrical differential mobility analyzer for sub-3 nm particle sizing

    Cai et al., Journal of Aerosol Science, 2017, 106: 111-119

  49. Evolution of Submicrometer Organic Aerosols during a Complete Residential Coal Combustion Process

    Zhou et al., Environmental Science & Technology, 2016, 50: 7861-7869

  50. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 μm

    Liu et al., Frontiers of Environmental Science & Engineering, 2016, 10: 63-72

  51. Gaseous Ammonia Emissions from Coal and Biomass Combustion in Household Stoves with Different Combustion Efficiencies

    Li et al., Environmental Science & Technology Letters, 2016, 3: 98-103

  52. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities

    Jiang et al., Nature Protocols, 2015, 10: 768

  53. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement

    Wang et al., Aerosol Science and Technology, 2015, 49: 1063-1077

  54. Aerosol Charge Fractions Downstream of Six Bipolar Chargers: Effects of Ion Source, Source Activity, and Flowrate

    Jiang et al., Aerosol Science and Technology, 2014, 48: 1207-1216

  55. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    Cao et al., Environmental Science & Technology, 2014, 48: 1499-1507

  56. Characteristics and health impacts of particulate matter pollution in China (2001–2011)

    Cheng et al., Atmospheric Environment, 2013, 65: 186-194

  57. Mobility particle size spectrometers: harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions

    Wiedensohler et al., Atmospheric Measurement Techniques, 2012, 5: 657-685

  58. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    Chen et al., PNAS, 2012, 109: 18713-18718

  59. Role of Surface Area, Primary Particle Size, and Crystal Phase on Titanium Dioxide Nanoparticle Dispersion Properties

    Suttiponparnit et al., Nanoscale Research Letters, 2011, 6:

  60. First Measurements of Neutral Atmospheric Cluster and 1–2 nm Particle Number Size Distributions During Nucleation Events

    Jiang et al., Aerosol Science and Technology, 2011, 45: ii-v

  61. Electrical Mobility Spectrometer Using a Diethylene Glycol Condensation Particle Counter for Measurement of Aerosol Size Distributions Down to 1 nm

    Jiang et al., Aerosol Science and Technology, 2011, 45: 510 - 521

  62. Transfer Functions and Penetrations of Five Differential Mobility Analyzers for Sub-2 nm Particle Classification

    Jiang et al., Aerosol Science and Technology, 2011, 45: 480 - 492

  63. Ambient Pressure Proton Transfer Mass Spectrometry: Detection of Amines and Ammonia

    Hanson et al., Environmental Science & Technology, 2011, 45: 8881-8888

  64. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies

    Jiang et al., Journal of Nanoparticle Research, 2009, 11: 77-89

  65. Does nanoparticle activity depend upon size and crystal phase?

    Jiang et al., Nanotoxicology, 2008, 2: 33 - 42

  66. Model for nanoparticle charging by diffusion, direct photoionization, and thermionization mechanisms

    Jiang et al., Journal of Electrostatics, 2007, 65: 209-220

  67. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Jiang et al., Nanotechnology, 2007, 18: 285603

  68. Anthropogenic mercury emissions in China

    Streets et al., Atmospheric Environment, 2005, 39: 7789-7806

中文文章

  1. 李晓晓, 蒋靖坤, 王东滨, 葛茂发, 郝吉明. 大气超细颗粒物来源及其化学组分研究进展. 环境化学, 2021, 40(10): 2947-2959.

  2. 李雪, 蒋靖坤*, 王东滨, 邓建国, 贺克斌, 郝吉明. 冠状病毒气溶胶传播及环境影响因素. 环境科学, 2021, 42(7): 3091-3098.

  3. 王东滨, 薛墨, 陈小彤, 蒋靖坤*. 一种新型软X射线气溶胶荷电器的开发与评测. 大气与环境光学学报, 2020, 15(06): 429-437.

  4. 张莹,邓建国,王刚,李妍菁,续鹏, 蒋靖坤*,典型钢铁焦化厂可凝结颗粒物排放特征,环境工程,2020, 38(09): 154-158.

  5. 邓建国, 张莹, 王乐冰, 李妍菁, 段雷, 郝吉明, 蒋靖坤*,测量固定源可凝结颗粒物的稀释间接法及系统,环境科学学报,2020,40(11):4162-4168.

  6. 楚碧武, 马庆鑫, 段凤魁, 马金珠, 蒋靖坤, 贺克斌, 贺泓. 大气“霾化学”:概念提出和研究展望. 化学进展, 2020, 32: 1-4.

  7. 蒋靖坤*,邓建国,王刚,张莹,李妍菁,段雷,郝吉明.固定污染源可凝结颗粒物测量方法.环境科学, 2019, 40(12): 5234-5239.

  8. 王东滨, 郝吉明, 蒋靖坤*. 民用固体燃料燃烧超细颗粒物排放及其潜在健康影响. 科学通报, 2019, 64: 3429.

  9. 邓建国,马子轸,李振,段雷,蒋靖坤*.不同湿法脱硫工艺对燃煤电厂PM2.5排放的影响.环境科学,2019,40(8):3457-3462.

  10. 姚群, 柳静献, 蒋靖坤. 钢铁窑炉烟尘细颗粒物超低排放技术与装备. 中国环保产业, 2018, 6: 39 – 43.

  11. 李庆, 段雷, 蒋靖坤*, 王书肖, 郝吉明. 我国民用燃煤一次颗粒物的减排潜力研究. 中国电机工程学报, 2016, 16: 4408-4414

  12. 樊筱筱, 蒋靖坤*, 吴烨, 张强, 李振华, 段雷. 不同稀释条件与测量技术下缸内直喷汽车排放颗粒物数浓度和粒径分布特征. 中国电机工程学报,2016, 16

  13. 樊筱筱, 蒋靖坤*, 张强, 李振华, 何立强, 吴烨, 胡京南, 郝吉明. 轻型汽油车排放颗粒物数浓度和粒径分布特征. 环境科学,2016, 37(10): 3743-3749

  14. 蒋靖坤*, 邓建国, 李振, 马子轸, 周伟, 张强, 段雷, 郝吉明. 双级虚拟撞击采样器应用于固定污染源PM10和PM2.5排放测量. 环境科学,2016, 37(6): 2003-2007

  15. 张琦, 李庆, 蒋靖坤*, 邓建国, 段雷, 郝吉明. 一套民用固体燃料燃烧大气污染物排放测试系统的搭建和评测. 环境科学学报,2016,36:3393-3399

  16. 陈小彤, 蒋靖坤*, 邓建国, 李庆, 段雷,郝吉明. 一种气溶胶测量仪器标定系统的设计及性能评估. 环境科学,2016, 37(3): 789-794

  17. 马子轸, 李振, 蒋靖坤, 叶芝祥, 邓建国, 段雷. 燃煤电厂产生和排放的PM2.5中水溶性离子特征. 环境科学, 2015, 36(7):2361-2366

  18. 王步英, 郎继东, 张丽娜, 方剑火, 曹晨, 郝吉明, 朱听, 田埂*, 蒋靖坤*. 基于16S rRNA基因测序法分析的北京霾污染过程PM2.5和PM10中细菌群落特征. 环境科学, 2015, 36(8): 2727-2734

  19. 段雷, 马子轸, 李振, 蒋靖坤, 叶芝祥. 燃煤电厂排放细颗粒物的水溶性无机离子特征综述. 环境科学, 2015, 36(3): 1117-1122

  20. 蒋靖坤*, 邓建国, 段雷, 张强, 李振, 陈小彤, 李兴华, 郝吉明. 基于虚拟撞击原理的固定源PM10/PM2.5采样器的研制. 环境科学, 2014, 35(10): 3639-3643.

  21. 蒋靖坤*, 邓建国, 李振, 李兴华, 段雷, 郝吉明. 固定污染源排气中PM2.5采样方法综述. 环境科学, 2014,35(5): 2018-2024.

  22. 麦华俊, 蒋靖坤*, 何正旭, 郝吉明. 一种纳米气溶胶发生系统的设计及性能测试. 环境科学, 2013,34: 2950-2954

  23. 蒋靖坤, 郝吉明, 吴烨, David G. Streets, 段雷, 田贺忠. 中国燃煤汞排放清单的初步建立. 环境科学, 2005, 26: 34-39.